洋流的电磁效应及其对大地电磁场的影响The Electromagnetic Field Induced by Tide and Its Influence on Magnetotelluric
沈昭昂,彭中,杨波
摘要(Abstract):
海底大地电磁观测常受到海洋潮汐、内波或湍流的干扰,为了提高大地电磁数据观测的可靠性,有必要研究洋流运动的感生电磁场对海洋大地电磁观测的影响。本文从麦克斯韦方程组出发,推导了海水运动产生的感应电磁场控制方程,并基于有限体积法计算了包含海水层且考虑了洋流运动的感生电磁场效应的大地电磁响应。同时,以简单洋陆模型和卡斯卡迪亚俯冲带模型为例,对大地电磁响应进行了三维数值模拟。结果表明:观测信号周期越短,靠近洋流活动区域的海底大地电磁场受海水运动的干扰越严重,视电阻率失真现象越明显;陆地一侧的大地电磁场因感生电磁场的快速衰减而几乎未受到海水运动的影响。因此洋流的电磁效应对于海底观测台站会产生较大的干扰,而对陆基台站的观测所带来的影响可以忽略。
关键词(KeyWords): 洋流;电磁效应;大地电磁正演
基金项目(Foundation): 国家自然科学基金(编号:41830212)
作者(Author): 沈昭昂,彭中,杨波
参考文献(References):
- [1] 崔金岭.利用信噪分离方法提高大地电磁张量阻抗估算质量[J].地球科学,2014,39(4):492.
- [2] 余艳平.海底大地电磁数据处理方法研究[D].成都:成都理工大学,2012.
- [3] 杨进,魏文博,王光锷.海水层对海洋大地电磁勘探的影响研究[J].地学前缘,2008,15(1):217-221.
- [4] Wang S,Constable S,Reyes-Ortega V,et al.A newly distinguished marine magnetotelluric coast effect sensitive to the lithosphere-asthenosphere boundary[J].Geophysical Journal International,2019,218(2):978-987.
- [5] Chave A D,Jones A G,Mackie R,et al.The magnetotelluric method:Theory and practice[M].Cambridge:Cambridge University Press,2012.
- [6] Kuvshinov A,Olsen N.A global model of mantle conductivity derived from 5 years of champ,φrsted,and SAC-C magnetic data:conductivity model from satellite data[J].Geophysical Research Letters,2006,33(18):L18301.
- [7] Schnepf N R,Kuvshinov A,Sabaka T.Can we probe the conductivity of the lithosphere and upper mantle using satellite tidal magnetic signals:satellite tidal magnetic signals[J].Geophysical Research Letters,2015,42(9):3 233-3 239.
- [8] Shimizu H,Utada H.Motional magnetotellurics by long oceanic waves[J].Geophysical Journal International,2015,201(1):390-405.
- [9] Grayver A V,Schnepf N R,Kuvshinov A V,et al.Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary[J].Science Advances,2016,2(9):e1 600 798.
- [10] Zhang H,Egbert G D,Chave A D,et al.Constraints on the resistivity of the oceanic lithosphere and asthenosphere from seafloor ocean tidal electromagnetic measurements[J].Geophysical Journal International,2019,219(1):464-478.
- [11] 柳建新,童孝忠,郭荣文,等.大地电磁测深法勘探[M].北京:科学出版社,2012:200.
- [12] M Meqbel N,Egbert G D,Wannamaker P E,et al.Deep electrical resistivity structure of the northwestern U.S.derived from 3-D inversion of USArray magnetotelluric data[J].Earth and Planetary Science Letters,2014,402:290-304.
- [13] Constable S,Weiss C J.Mapping thin resistors and hydrocarbons with marine EM methods:Insights from 1D modeling[J].Geophysics,2006,71(2):G43-G51.
- [14] Cox C S,Constable S C,Chave A D,et al.Controlled-source electromagnetic sounding of the oceanic lithosphere[J].Nature,1986,320:52-54.
- [15] Key K.1D inversion of multicomponent,multifrequency marine CSEM data:Methodology and synthetic studies for resolving thin resistive layers[J].Geophysics,2009,74(2):F9-F20.
- [16] Mitsuhata Y.2-D electromagnetic modeling by finite-element method with a dipole source and topography[J].Geophysics,2000,65(2):465-475.
- [17] Alken P,Thébault E,Beggan C D,et al.International geomagnetic reference field:the thirteenth generation[J].Earth,Planets and Space,2021,73(1):49.
- [18] Cummings J A.Operational multivariate ocean data assimilation[J].Quarterly Journal of the Royal Meteorological Society,2005,131(613):3 583-3 604.
- [19] Kelbert A,Schultz A,Egbert G.Global electromagnetic induction constraints on transition-zone water content variations[J].Nature,2009,460(7 258):1 003-1 006.
- [20] Smith J T.Conservative modeling of 3-D electromagnetic fields,Part l:Properties and error analysis[J].Geophysics,1996,61(5):1 308-1 318.
- [21] Egbert G,Yang B,Bedrosian P A,et al.Fluid Transport and storage in the cascadia forearc inferred from magnetotelluric data[J].Nature Geoscience,15(8):677-682.